论文部分内容阅读
Hydrodynamic characteristics for two-dimensional flow around a waving plate are investigated. Under large Reynolds number approximation, the flow is assumed to be a combination of the outer potential flow and a thin vortex layer, which consists of a boundary layer and a shed free shear layer. A nonlinear mathematical formulation for describing the outer unsteady potential flow coupled with an unsteady boundary layer equation for the inner viscous flow adjacent to the waving plate is developed. A semi-analytical method with a nonlinear Kutta condition imposed at the trailing edge is used to solve the velocity field of the outer flow and the evolution of wake vortex induced by a large-amplitude waving plate. The unsteady boundary layer equation is solved by extending Pohlhausen’s method to its unsteady counterpart. The thrust and viscous drag coefficients, propulsive efficiency, and the patt of wake vortex sheet are discussed.