论文部分内容阅读
Nonlinear dynamics in an optoelectronic delayed feedback semiconductor laser and its application in sensing are studied. We analyze the theories of stability and period of the laser. A route to quasi-periodic bifurcation or a stochastic state from stability is numerically analyzed by shifting the feedback level. The induced dynamics are found to be in one of four distributions(stable, periodic pulsed, period-three pulsed, and undamping oscillating).An external injection into the laser results in the process being more or less the opposite with the conventional optical injection cases. Based on this process or the dynamic regimes, we present a modeling of the incoherent detection sensor using the nonlinear period-one characteristic of the laser. The sensor discriminates the injection light variation as a sensing signal via detecting the behaviors from the period-one laser.
Nonlinear dynamics in an optoelectronic delayed feedback semiconductor laser and its application in sensing are studied. We analyze the theories of stability and period of the laser. A route to quasi-periodic bifurcation or a stochastic state from stability is numerically analyzed by shifting the feedback level . The induced dynamics are found to be in one of four distributions (stable, periodic pulsed, period-three pulsed, and undamping oscillating). An external injection into the laser results in the process being more or less the opposite with the conventional optical injection cases. Based on this process or the dynamic regimes, we present a modeling of the incoherent detection sensor using the nonlinear period-one characteristic of the laser. The sensor discriminates the injection light variation as a sensing signal via the behaviors from the period- one laser.