论文部分内容阅读
基本萤火虫群优化GSO(Glowworm Swarm Optimization)算法在求解函数全局寻优问题时,存在后期收敛速度慢、容易陷入局部极值等问题。为此,提出一种基于混合变异的萤火虫群优化算法。该算法用混沌变异和边界变异来增加种群的多样性,避免算法陷入局部最优,且能使算法获得精度更高的解。运用六个标准测试函数进行测试,结果表明,改进后的萤火虫群优化算法比基本GSO算法具有更高的寻优速度、寻优精度和收敛率。