基于混合变异的萤火虫群优化算法

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:jsdfyxl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基本萤火虫群优化GSO(Glowworm Swarm Optimization)算法在求解函数全局寻优问题时,存在后期收敛速度慢、容易陷入局部极值等问题。为此,提出一种基于混合变异的萤火虫群优化算法。该算法用混沌变异和边界变异来增加种群的多样性,避免算法陷入局部最优,且能使算法获得精度更高的解。运用六个标准测试函数进行测试,结果表明,改进后的萤火虫群优化算法比基本GSO算法具有更高的寻优速度、寻优精度和收敛率。
其他文献
受输入滤波器参数和系统功率的影响,矩阵变换器网侧功率因数在采用传统控制方法时,网侧功率因数控制精度不高。为克服这一问题,通过建立矩阵变换器时域数学模型,提出一种高精
现有的数据流聚类方法很难兼顾数据稀疏和子空间聚类等高维数据难题,而分布式数据流对数据流聚类提出包括在线计算效率、通信开销以及多路数据的融合等更多挑战。提出分布式