论文部分内容阅读
The nanostructured 4–8 mol% Gd2O3-4.5 mol% Y2O3-ZrO2 (4–8 mol% GdYSZ) coatings were developed by the atmospheric plasma spraying technique. The microstructure and thermal properties of plasma-sprayed 4–8 mol%GdYSZ coatings were investigated. The experimental results indicate that typical mi-crostructure of the as-sprayed coatings were consisted of melted zones, nano-zones, splats, nano-pores, high-volume spheroidal pores and micro-cracks. The porosity of the 4, 6 and 8 mol%GdYSZ coatings was about 9.3%, 11.7%and 13.3%, respectively. It was observed that the addition of gadolinia to the nano-YSZ could significantly reduce the thermal conductivity of nano-YSZ. The thermal conductivity of GdYSZ decreased with increasing Gd2O3 addition. And the reduction in thermal conductivity is mainly attrib-uted to the addition of Gd2O3, which results in the increase in oxygen vacancies, lattice distortion and porosity.