论文部分内容阅读
为了进一步提高欠定盲源分离算法中混合矩阵估计方法的性能,提出了一种基于加权最小二乘支持向量机(SVM)的欠定盲源分离混合矩阵估计方法.该方法利用信号的方向角度特征估计出有效信源信号个数,然后采用加权最小二乘支持向量机方法获得初始权值,每次将其中一个权值对应的样本点作为测试样本,其余点作为训练样本,依次对样本的误差变量进行更新,再根据权值计算公式实现所有权值的更新,进而确定最优分类平面,实现对观测信号的最优分类,最终估计出混合矩阵.实验结果表明,新算法是有效的,其平均误差是基于K-均值方法误差的0.2倍左右