论文部分内容阅读
通过求解一个第二类Fredholm方程,得到了基于非局部塑性软化模型的应变局部化问题理论解,结果表明,只有在当采用过非局部修正形式的非局部塑性软化模型才能得到应变局部化解,且得到的塑性应变分布和荷载响应依赖于所引入的特征长度及过非局部权参数。通过一维应变局部化有限元数值解,验证了非局部理论的引入能克服计算结果的网格敏感性,塑性应变分布和荷载响应计算结果随着网格细化趋近于理论解。将非局部塑性软化模型用于双轴应变局部化试验数值模拟,并分析了非局部理论引入的参数对计算结果的影响及计算过程的收敛特性。