深度学习与遥感数据分析

来源 :武汉大学学报(信息科学版) | 被引量 : 0次 | 上传用户:billhe123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度学习的迅猛发展,为遥感大数据的智能分析提供了重要技术手段。首先主要介绍了遥感数据识别和应用中设计的深度学习模型与方法,提出并实现了面向激光雷达点云、光学遥感图像和高光谱图像等数据地物识别的深度强化学习、多任务学习和亚像素-像素-超像素特征学习网络模型。这类模型的参数基本上由学习得到,调参工作量小,而且充分顾及了地物间的空间和上下文信息以及纹理和光谱特征,泛化能力强。然后描述了联合深度学习和多源遥感数据在精准扶贫评估、青藏高原20 a湿地变化及空间分析和玉米产量估产等方面的研究进展。从中可以看出,
其他文献
酒驾问题一直存在且不能得到良好高效地解决,本装置以解决这一问题为出发点,形成一套有效的汽车内驾驶员酒精浓度超标制动装置.系统通过MQ-3传感器来检测驾驶人呼出气体中酒
文章在简要阐明房屋建筑工程中防渗漏施工技术应用价值的基础上,重点指出了具体的应用策略,希望可以为相关人员提供有益指导.
人工智能领域的技术进步给地理空间相关领域研究的智能化发展和融合创新带来了新机遇和新挑战。地理空间人工智能(geospatial artificial intelligence,GeoAI)是指地理空间科学与人工智能相结合的交叉学科研究方向,通过研究与开发机器的空间智能,提升对于地理现象和地球科学过程的动态感知、智能推理和知识发现能力,并寻求解决人类和地球环境系统相互作用中的重大科学和工程问题。简要