论文部分内容阅读
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported π state and travelling wave state in the one with natural frequencies followingLorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated traveling wave state except for already reported π state and traveling wave state in the one with natural frequency following Lorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.