基于RGB—D序列的人体动态建模方法

来源 :计算机与现代化 | 被引量 : 10次 | 上传用户:gerui1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人体建模是计算机视觉研究领域的重要研究课题。人体建模被广泛应用于科研、动画、游戏、服装设计、工业等领域,具有非常广阔的应用前景。传统的建模方法可以在大体上还原人体的姿态,但细节上会有偏差。本文提出一种基于RGB-D序列的人体动态建模方法。人体在场景中自然活动,利用廉价的深度摄像设备Kinect可以获取人体的骨架信息和三维点云。利用获得的骨架信息将模板人体分段刚性地变形到目标位置,使用ICP算法将变形后的模型与Kinect获取的点云进行更精确的配准,使用TPS变形获得一个平滑的柔性形变人体。
其他文献
提出一种利用颜色信息进行车道线检测并且能够分辨黄色或白色车道线的新方法。首先,找出图像中与路面颜色差异较大并且具有合理宽度的像素段;然后在RGB颜色空间利用先验信息对像素段的颜色进行辨识;再用辨识后的像素段分别估计出黄色或白色车道线的颜色分割阈值;最后利用获取的阈值对整幅图像进行车道线检测。实验结果表明,该方法能够在复杂背景环境或路面污染等干扰条件下较好地检测出车道线并能辨识出车道线颜色。本方法简
传统的水合物形成条件预测方法都存在各种缺点,而小波神经网络预测水合物形成条件的精度比较高,利于推广。针对水合物形成条件预测值之间相对差距较大,本文提出群体最大误差比率