论文部分内容阅读
充分利用前期迭代中解的信息是构造高效蚁群算法实现的关键之一。文中把免疫记忆和克隆选择的思想引入蚁群算法,提出了基于免疫记忆的蚁群算法(IMBACA)。算法通过在原有蚁群模型上增加一个免疫记忆库,将记忆库中的解对应为免疫记忆细胞(及其产生的抗体),将问题对应为抗原,并借鉴克隆选择和免疫记忆的思想进行解的构造和信息素更新。算法从解的质量和时间方面与传统蚁群算法进行了比较,实验结果表明,所提出的IMBACA算法可明显提高传统蚁群算法的性能,同时也为解决其他组合优化问题提出了一个新的思路。