理解,需要“回望”的视角

来源 :考试周刊 | 被引量 : 0次 | 上传用户:angella_dj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【片断回放】
  出示:“王大叔用18根1米长的栅栏围成一个长方形花圈,有多少种不同的围法?”
  问:从这句话中你获得了哪些数学信息呢?
  生:是长方形的花圃,这个长方形花圃的周长是18米。
  师:根据这些信息现在请你帮王大叔思考一下18根1米的栅栏可以围成怎样的长方形花圃呢?有人举手了,相信大家想出一种方法是不会有问题的,难就难在看谁能把不同围法既准确又全面地找出来?有信心吗?
  好的,下面请大家独立思考,并用自己喜欢的方法在白纸上记录下各种不同围法。活动后交流:曹老师想统计一下用小棒边摆边记录的举手,没有用到小棒的举手。嘿,真行,长大了,脑袋瓜比以前成熟了。
  A:请看第一份作业纸,无序地画图列举,有所遗漏。
  问:结合张老师刚才提出的要求欣赏一下这位同学的作业,有没有值得肯定的地方?
  生:有,画的都是对的。
  师:你们认同吗?看来哪个要求达到啦?就请他为我们说说是怎么想到的。
  师:用长或宽一个一个地尝试,再根据计算求出宽或长,并且把想到的情况一个一个列了出来,一个字,好,有没有问题呢?
  生质疑:没有找全。
  师:也就是没有找全面,有遗漏了吧,那大家一起帮助他分析一下呢?没有找全的原因可能是什么呢?
  生说:没有按照一定的顺序去想。
  师:看来,要做到准确又全面肯定有一定的方法,是吧?
  出示有序地画图列举。追问:和刚才的方法有什么相同的地方?
  生:画图,也是一个一个把各种情况列了出来。
  师:感觉真好,你认为这两位同学的方法不同之处在哪里?
  生:一个一个尝试的,根据长加宽的和是周长的一半推算的,有序。
  师:很赞同你的观点,由周长想到了周长的一半,又紧紧抓住了周长的一半就是长加宽的和这一关系,依次按照顺序把长和宽不同的情况一一列了出来。在这个过程中曹老师提炼出两个字,有序。那这次各种情况是否既准确又全面呢?知道是什么起了重要作用吗?有序。
  生:有序列举能够将复杂问题简单化。
  师:是啊,正因为后两位同学都是很有序地一一列举,才把各种围法既准确又全面地找了出来。
  问:那这两份作业有不同之处吗?
  生说:在用列举策略的时候可以用画图的形式,也可以用列表的形式。都是我们以前学过的策略,看来各种策略是相辅相成的。不管用怎样的形式都要“有序”列举。
  【我的一些思考】
  很奇怪,每天都在上不同数学课,与孩子们轻松地学数学,不曾觉得40分钟漫长。但是,今天听完课的第一感觉便是:原来,40分钟可以这样“长”,“长”在于需要思考很多东西。
  一、思考“策略”
  听过专家这样解释策略:“策略”指计策和谋略,是人们面对具体问题做出的基本判断。在小数网研讨会上,一位版主这样解读策略:“策略”比“方法”更上位,“方法”可以从外部输入,可以通过教师的讲解示范传授给孩子,而“策略”是一种思想意识,无法传授,需要孩子在具体问题解决过程中去体验、去感悟。
  近期一直在接触“策略”,所以,在我心里,对策略的定位为:在解决问题的教学中,孩子对数量关系的阐述可以不十分规范地表述,能够结合具体情境和自身经验描述出思考过程就可以,但需要我们有意识地引导孩子对各种方法进行比较,经过一定的数学思考,形成解决问题的策略。
  二、思考“起点”
  思考孩子的知识起点很重要!因此调整教案前,我首先思考四年级孩子的知识起点,很欣喜地发现在他们一年级时已经学习了分与合,二、三年级时能用数字组数,四年级上学期学会了“搭配的规律”。
  原来,孩子们几乎每个学期都在用“一一列举”策略解决着一些简单问题,而且不断具体应用于过程中,孩子们已经体会着一一列举的基本思考方法,知道列举要注意有序,不重复、不遗漏地思考,但我想到现在为止,这只是一种无意识的解题行为。如何让学生的思考更深入、更系统,便是今天课堂上的任务。
  三、思考“过程”
  课的教学重点是让学生学会有序地、不重复、不遗漏地一一列举。在新知教学中,教者首先引导学生认识“如何做到有序”,如例1教学中,我让学生说出他是按照什么样的顺序一一列出长、宽的米数的。引导学生认识到可以从“长最长是8米开始,然后依次减少1米”这样的顺序列出答案。也可以从“宽最短是1米,然后依次增加1米”的顺序思考。这样一个教学过程让学生充分认识到什么是“有序”,怎样才能按照一定顺序列举。因为有了例1的有效引导,学生在解答例2的“有多少种不同购书方案”时,大部分都能按照先列举“选购一种书”的不同方案,再列举“选购两种书”的不同方案,最后列举“选购三种书”的不同方案顺序进行。
  在例2教学中,教者着重和学生一起分析“选购两种书”时按照怎样的顺序一一列举。在这个问题处理上,教者引导学生回忆已经学过的“搭配的规律”,唤醒学生已有的知识经验,不仅让学生再次加深对“有序”列举的印象,还有效进行新旧知识的衔接,从而降低例2的教学难度。
  在后面练习巩固中,教者同样注意让学生说说是按照怎样的顺序列举的,体会“有序”列举的必要性和重要性。
  四、思考“困惑”
  还有一点自我感觉有所改进的地方是:在整个教学过程中,每当孩子们用一一列举方法解决问题之后,教者都会有意识地引导他们对解决问题的过程进行回顾和反思,而且各有侧重。
  如导入部分通过游戏后的反思引入一一列举策略,让孩子们初步体会一一列举的有序性;例1“围羊圈”突出“找到根据,再有序列举”,例2“订杂志”突出“先分类,再有序列举”,而巩固练习“公交车”、“音乐钟”则突出“找到规律,再有序列举”。除了不断渗透一一列举的有序性外,我还希望深化孩子们的数学思考,让他们对策略的认识更科学化、深刻化。
  下课后我在想:在解决问题的过程中,在运用策略的过程中发展孩子的数学思考,应该是教者设计这节课的初衷,也是主旨,但是怎样把握好这个“度”,还须进一步思考。
其他文献
小时候,看哥哥姐姐都戴着红领巾,我羡慕极了,觉得戴红领巾的人就像超人一样了不起。  上学了,我也有红领巾了。不过,随着时间的推移,我嫌它挂在脖子上麻烦,渐渐把它“遗忘”在了抽屉里,用上了更方便的队徽。  周末,整理书橱时发现了一个作文本,封面上的签名非常稚拙,我忍不住对里面的内容产生了好奇,迫不及待地翻阅起来。说来也巧,恰好看到刚戴红领巾时写的那篇作文。  读着读着,我开始怀念这位“老朋友”了,翻
期刊
摘 要: 随着素质教育的全面推进,教育者越来越重视学生的个性发展,要求在学生接受教育的过程中,学生的个性特征必须得到充分尊重与发展,因为每个学生都是独立的个体,传统课堂“一刀切”的教学模式已经逐渐被现代课堂抛弃,因材施教、分层教学是现代课堂教学的主旋律。分层教学的课堂教学模式能充分展现学生的个性,让教师针对每个学生个体进行有目的的教学,大大提高教师在有限时间内的教学效率,适应现代学生学习方式,尤其
期刊
摘 要: 几何画板是现代科学技术发展下为数学教学提供服务的信息技术软件,因其为数学教学提供了良好教学环境及数形结合的特点而被广泛运用到初中数学教学中,以帮助教师更便捷地制作数学教学有关课件,提高学生的学习兴趣,培养学生的思维能力与自主学习意识与探究创新精神。在具体教学实践中,教师可以利用几何画板创造生动具体的教学环境,将模糊抽象的数学教学变得直观生动具体,以更好地掌握具体数学知识。本文将主要针对几
期刊
【考场真题】  科技的发展改变了我们的生活。网络、电脑、手机、微信、QQ……这些你都不陌生吧?第一次接触,有什么新奇之感?交流中,遇到了什么有趣的事?操作中,有什么秘籍?……把你在现代通信中印象深刻的事写下来和大家分享吧!  —2018年上海市静安区小考作文题     【考题解读】  这是一道自命题作文,也就是给你一个主题,没有确定的题目。你可以结合文章内容起一个更贴切的文题,如《奶奶也玩微信了》
期刊