论文部分内容阅读
Herb-partitioned moxibustion can effectively mitigate visceral pain, a major symptom in inflammatory bowel disease, but the analgesic mechanism is still unclear. Moreover, extracellular signal-regulated kinase, substance P, and neurokinin-1 are involved in formation of central hyperalgesia. Thus, we postulated that the analgesic effect of herb-partitioned moxibustion may be associated with these factors. Accordingly, in this study, we established an inflammatory bowel disease visceral pain model in rat by enema with a mixed solution of 5%trinitrobenzenesulfonic acid and 50% ethanol. BilateralTianshu (ST25) andQihai (CV6) points were selected for herb-partitioned moxi-bustion. Our results showed that herb-partitioned moxibustion improved visceral pain and down-regulated extracellular signal-regulated kinase, substance P, and neurokinin-1 protein and mRNA expression in dorsal root ganglia. These results indicate that down-regulation of extracellular signal-regulated kinase, substance P, and neurokinin-1 protein and mRNA may be a central mechanism for the analgesic effect of herb-partitioned moxibustion.