论文部分内容阅读
ZnO nanoparticles were synthesized via precipitation-pyrolysis (P&P), where the precursor zinc hydroxide carbonate (Zn5(CO3)2(OH)6) was obtained and then pyrolyzed. The results of TEM indicate that pyrolysis temperature is the predominant factor for controlling mean sizes of nanoparticles, ranging from 8 nm to 80 nm. Increasing the pyrolysis temperature enhances the mean size. The results of XRD show that nanoparticles are all of crystalline zincite. The mean size observed by TEM is in agreement with that calculated from the specific surface area(SSA) and the crystalline size calculated from the XRD patterns, indicating that the primary particles are rather uniform in size and have single crystals. The growth behaviors of epitaxy along the C-axis are responsible for the morphology of ZnO changing from sphere to rod-like shape, and then to reticulation. Compared with other synthesis approaches, P&P can get fairly good product with a relatively low cost.
ZnO nanoparticles were synthesized via precipitation-pyrolysis (P & P), where the precursor zinc hydroxide carbonate (Zn5 (CO3) 2 (OH) 6) was obtained and then pyrolyzed. sizes of nanoparticles ranging from 8 nm to 80 nm. Increasing the pyrolysis temperature enhances the mean size. The results of XRD show that nanoparticles are all of crystalline zincite. The mean size observed by TEM is in agreement with that calculated from the specific surface area (SSA) and the crystalline size calculated from the XRD patterns, indicating that the primary particles are rather uniform in size and have single crystals. The growth behaviors of epitaxy along the C-axis are responsible for the morphology of ZnO changing from sphere to Compared with other synthesis approaches, P & P can get fairly good product with a relatively low cost.