论文部分内容阅读
This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid. The solubility and mass transfer studies were performed using the hydrotropes, i.e., sodium acetate, sodium salicylate, citric acid, and urea at concentrations of 0~3.0 mol/L and system temperatures of 303~333 K. It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature. All hydrotropes used in this work showed an enhancement in solubility and mass transfer coefficient to different degrees. The maximum en-hancement factor values were determined for all hydrotropes used in this study. The highest value was 28.08 for solubility studies and 10.42 for mass transfer studies. The performance of hydrotropes was measured in terms of the Setschenow constant (Ks). The highest value observed was 0.696.
The study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid. The solubility and mass transfer studies were performed using the hydrotropes, ie, sodium acetate, sodium salicylate, citric acid, and urea at concentrations of 0-3.0 mol / L and system temperatures of 303 ~ 333 K. It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature. All hydrotropes used in this work showed an enhancement in solubility and mass The maximum en-hancement factor values were determined for all hydrotropes used in this study. The highest value was 28.08 for solubility studies and 10.42 for mass transfer studies. The performance of hydrotropes was measured in terms of the Setschenow constant (Ks). The highest value observed was 0.696.