论文部分内容阅读
Android系统的迅速迭代及其开源特性使得Android恶意软件产生大量的变种,这对Android恶意软件检测和分类带来不小的挑战.机器学习方法已成为恶意软件分类的主流方法,但现有的大多数机器学习方法都使用传统的算法(如支持向量机).目前卷积神经网络(CNN)作为一种深度学习方法表现出了更好的性能,特别是在图像分类等应用上.结合这一优势以及迁移学习的思想,本文提出了一种基于CNN架构的Android恶意软件检测和分类方法.首先,提取Android应用的DEX文件然后将其转换成灰度图像并放入CNN中进行训