论文部分内容阅读
INTRODUCTIONrnThe human spine serves multiple structural and physiologic roles. An essential function of the spinal column in all vertebrates is to integrate the brain and nervous system with the axial skeleton and simultaneously protect the spinal cord. For humans, the symmetry and position of the spine is key for bipedalism and for maintaining the center of gravity over the pelvis.1 The spine, with its 33 vertebrae, 23 intervertebral discs (IVDs), ligaments, and facet joints, withstands biomechanical forces while providing flexibility in three dimensions (Fig. 1). The stability of this multicomponent system over a lifetime is remarkable, although eventually the wear and tear from environmental stresses, plus genetic contributions, can evoke degenerative changes primarily in the IVD of the lumbar spine.2 Other common pathologies of the adult spine include tumors, fractures, lumbar spondylosis, stenosis, and segmental instability or deformity. Scoliosis is a lateral spinal deformity that is common and exhibits increasing prevalence with age and degeneration of the spine.3 In children, rare develop-mental disorders of embryogenesis due to malformed vertebrae, muscle weakness, or neurologic impairment can affect the integrity of the spine.