Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from

来源 :能源化学 | 被引量 : 0次 | 上传用户:polaris20092009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Piezocatalytic materials have been widely used for catalytic hydrogen evolution and purification of organic contaminants.However,most studies focus on nano-size and/or polycrystalline catalysts,suffer-ing from aggregation and neutralization of internal piezoelectric field caused by polydomains.Here we report a single crystal ZnO of large size and few bulk defects crafted by a hydrothermal method for piezo-catalytic hydrogen generation from pure water.It is noteworthy that single-side surface areas of both original as-prepared ZnO and Ga-doped ZnO bulk crystals are larger than 30 cm2.The high quality of ZnO and Ga-doped ZnO bulks are further uncovered by high-resolution transmission electron microscope(HRTEM),photoluminescence (PL) and X-ray diffraction (XRD).Remarkably,an outstanding hydrogen production rate of co-catalyst-free Ga-doped ZnO bulk crystal (i.e.,a maximum rate of 5915 μmol h-1 m-2) is observed in pure water triggered by ultrasound in dark,which is over 100 times higher than that of its powder counterpart (i.e.,52.54 μmol h-1 m-2).The piezocatalytic performance of ZnO bulk crystal is systematically studied in terms of varied exposed crystal facet,thickness and conductivity.Different piezocatalytic performances are attributed to magnitude and distribution of piezoelectric potential,revealed by the finite element method (FEM) simulation.The density functional theory (DFT) calculations are employed to investigate the piezocatalytic hydrogen evolution process,indicating a strong H2O adsorption and a low energy barrier for both H2O dissociation and H2 generation on the stressed Zn-terminated (0001) ZnO surface.
其他文献
Lithium-sulfur (Li-S) batteries are deemed as one of the most promising energy storage systems due to their ultrahigh theoreti-cal energy density of 2600 Wh kg-1 far beyond the current lithium-ion battery technique [1].Generally,the sulfur redox reac-tion
期刊
At present,the stability of the new generation of solar cells based on hybrid perovskites is the bottleneck for their practical applications.Photochemical effects,high temperature,ultraviolet light,humidity and other known or still unknown factors might c
In advantages of their high capacity and high operating voltage,the nickel (Ni)-rich layered transition metal oxide cathode materials (LiNixCoyMnzO2 (NCMxyz,x + y + z =1,x ≥ 0.5) and LiNi0.8Co0.15Al0.05O2(NCA)) have been arousing great interests to improv
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge
Aqueous zinc-ion batteries (ZIBs) have attracted great attention as the candidates for large-scale energy storage system,recently,because of their low cost,environment-friendly,high safety,and high theoret-ical energy densities.Among the numerous cathode
Hole-transporting material (HTM) plays a paramount role in enhancing the photovltaic performance of perovskite solar cells (PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic me
Sustainable transformation and efficient utilization of biomasses and their derived materials are environ-mentally as well as economically compliant strategies.Biomass seaweed-derived nitrogen self-doped porous carbon with tailored surface area and pore s
Electrocatalytic carbon dioxide reduction (CO2R) presents a promising route to establish zero-emission carbon cycle and store intermittent renewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fue
The ever-increasing need for sustainable development requires advanced battery techniques beyond the current generation of lithium ion batteries.Among all candidates being explored,lithium-sulfur batteries are a very promising system to be commercialized
LiNixCoyMnzO2 (NCM,x + y + z =1) is one of the most promising cathode candidates for high energy den-sity lithium-ion batteries (LIBs).Due to the potential in enhancing energy density and cyclic life of LIBs,Ni-rich layered NCM (NCM,x ≥ 0.6) have garnered