论文部分内容阅读
针对传统森林资源调查工作量大、时效性低的问题,开发具有较好普适性的森林蓄积量估测模型,以期为森林资源管理决策提供科学依据。以淳安县、临海市为研究区,运用2017年研究区Sentinel-2遥感数据、森林资源二类调查数据和数字高程模型数据,采用最小绝对收缩和选择算子(Lasso)特征选择方法,构建K最近邻算法(K-NN)、梯度提升迭代决策树(GBDT)、极端梯度提升(XGBoost)、梯度增强集成分类器(CatBoost)4种模型和基于单模型的堆叠法(Stacking)融合模型,通过10折交叉验证法检