论文部分内容阅读
维数减少是在损失较少特征信息的条件下处理高维图像数据的关键技术,已成为高维数据处理中的热点问题.样本的类内和类间散度判别信息被用于判断当前样本对属于相同类还是不同类,同时考虑未标签样本对算法性能的影响,提出了一种判别型半监督非线性维数减少算法(discriminativesemi-supervised nonlinear dimensionality reduction,DSSNDR),可有效避免奇异性.DSSNDR采用高斯核和多项式核组合得到的混合核,将原始数据以一系列"有用的"特征形式投影到一个