石墨鳞片-碳纤维协同增强铜基复合材料的制备与热物理性能

来源 :复合材料学报 | 被引量 : 0次 | 上传用户:kongguoying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用真空热压技术制备了石墨鳞片-碳纤维协同增强铜基复合材料,研究了碳纤维含量对复合材料的组织结构、抗弯强度与热导率的影响.结果表明,石墨鳞片-碳纤维/铜基复合材料界面结合良好;当碳纤维体积分数为0.5vol%~1.5vol%时,碳纤维能够均匀分散在基体中,并有效提升复合材料的抗弯强度.当碳纤维体积分数为1.5vol%时,抗弯强度达到最大值126 MPa,相比未添加碳纤维的复合材料提高了46%;但过量加入碳纤维(2vol%及以上)时,碳纤维出现团聚,使抗弯强度下降.碳纤维的加入会使复合材料的热导率小幅下降,复合材料的热导率从549 W/(m·K)降低到527 W/(m·K).使用声子失配模型(Acoustic mismatch model,AMM)结合Digimat软件的MF模块对多相复合材料的热导率进行有效预测.
其他文献
以氧化石墨烯(GO)、1,12-二氨基十二烷(C12H28N2)、TiO2溶胶为原料,通过预插层-离子交换-煅烧法制备TiO2/石墨烯夹层结构纳米复合材料.采用XRD、Raman、FTIR、TEM、TG、UV-Vis和PL对TiO2/石墨烯夹层结构纳米复合材料进行表征,并研究不同TiO2含量的TiO2/石墨烯纳米复合材料对环丙沙星(CIP)的光催化降解性能.在煅烧过程中,TiO2的晶化和GO的还原同时进行.根据XRD和FTIR结果推断,TiO2纳米颗粒在石墨烯层间原位生成,并通过化学键固定在石墨烯上,形成
为研究超高性能混凝土(Ultra-high performance concrete,UHPC)无腹筋梁的抗剪性能,本次试验共制作9根体外预应力无腹筋UHPC梁,试验参数包括预应力的大小、剪跨比、纵向配筋率和钢纤维掺量,通过四点加载方法分析试验构件的破坏形态、开裂强度和极限强度.试验结果表明:无预应力无腹筋UHPC梁在剪跨比为1.0加载时发生弯曲破坏,设置钢绞线25%极限强度张拉值使无腹筋UHPC梁的正截面抗弯能力得到强化,弯矩增幅为157%,使试验梁从弯曲破坏转变为剪切破坏.张拉25%和40%控制应力的
为改善传统纤维素水凝胶材料柔软易碎的性质,拓宽其应用领域,开发出具有优异力学性能的纤维素水凝胶,在LiOH-尿素体系中溶解纤维素后,先加入环氧氯丙烷制备出具有松散化学交联网络结构的纤维素水凝胶,再通过在酸溶液去除碱-尿素包裹体系后形成物理交联,获得具有初步取向的双交联纤维素水凝胶;在此基础上,沿长度方向调控机械力拉伸固定双网络结构水凝胶,获得不同力学性能的各向异性纤维素水凝胶.研究表明:经拉伸后水凝胶最大拉伸强度可达2.96 MPa,纤维素水凝胶在偏振光下出现彩色偏光现象,表现出典型的光学各向异性;通过该
研究了低密度芳纶短纤维(AF)对碳纤维增强环氧树脂复合材料(CF/EP)-铝蜂窝夹芯结构的界面增韧效果和增韧机制.制备了复合材料夹芯梁,将6 mm长度的AF制成絮状纤维薄层用于夹芯梁界面层的增韧,并采用非对称双悬臂梁实验对增韧和未增韧夹芯梁进行了界面断裂韧性的测量.相比于未增韧夹芯梁试件,增韧试件的平均临界能量释放率提高了91%,平均临界载荷提高了55%,而引入AF增韧层仅使夹芯梁质量提升了0.36%,显示本文方法具有良好的增韧效果与效率.使用SEM观察了夹芯梁界面的断面形貌与特征,微观观测结果显示,在界
基于B4C良好的中子吸收性能和碳纤维(CF)慢化中子的性能,采用真空热压烧结方法制备了集结构与功能一体具有不同CF含量的CF-B4C混合增强6061Al基复合材料,并对热轧后的组织形貌和力学性能进行分析.结果表明,大变形量热轧后B4C颗粒和CF分布较均匀,没有出现大面积的聚集现象,但是少量B4C颗粒和CF在轧制压力的作用下发生了断裂.当变形量达到60%时,复合材料的抗拉强度可达(265±3)MPa,与6061Al合金的抗拉强度相比,不同厚度的CF-B4C/Al复合材料的抗拉强度分别提高了80%和112%.
为研究锈蚀对钢板表面特性及碳纤维增强树脂复合材料(CFRP)板-锈蚀钢板界面黏结性能的影响,开展了6批次锈蚀钢板表面特性测试及22个CFRP板-锈蚀钢板双搭接试件的拉伸试验,揭示了锈蚀对钢板表面形貌与粗糙度、表观接触角与表面自由能以及CFRP板-钢板黏结界面破坏模式、有效黏结长度、极限荷载的影响.研究结果表明:随着腐蚀龄期不断增大,均匀腐蚀与点蚀交替主导钢板表面形貌特征变化,钢板表面粗糙度与表面自由能均出现周期性上下波动;CFRP板-锈蚀钢板黏结界面主要呈钢板/胶层界面剥离与CFRP板/胶层界面剥离混合破
为改善装配式结构节点的力学连接性能,对聚丙烯(PP)纤维灌浆料进行材性性能及其钢筋套筒连接接头的力学性能研究.选用不同掺量、长度PP纤维的灌浆料进行力学性能试验,确定PP纤维最佳掺量(占普通(JZ)灌浆料的体积比)和长度分别为0.5%和9 mm.以JZ灌浆料为对照组,设置了4d、6d、8d(d为钢筋直径)3种锚固长度的套筒接头试件并进行单向拉伸试验,采用光纤光栅传感器(FBG)和应变片两种测试方法研究PP纤维灌浆料下的粘结应力分布.结果表明:PP纤维增强灌浆料钢筋套筒的最小锚固长度在6d以上;PP纤维能够
利用聚丙烯腈(PAN)和β-环糊精(β-CD)原料,采用盐酸羟胺原位偕胺肟改性和静电纺丝技术,一步合成制备出偕胺肟聚丙烯腈(AOPAN)-β-CD纳米纤维膜.以纤维膜的形貌和对铀的吸附量为评价指标,优化了改性制备工艺条件.通过SEM、FTIR、表面张力仪等对纤维的形貌、组成和性能进行表征.结果表明,当氰基与羟胺摩尔比为1:1、改性时间为2 h时,AOPAN-β-CD纳米纤维膜的形态及纤维直径分布更均匀,纤维直径约为230 nm,纤维膜的吸附容量最大,达到78.62 mg/g.
基于瞬态动力学理论和遗传优化算法,以提高抗冲击损伤能力为优化目标对复合材料气瓶的铺层顺序进行优化.遗传算法利用MATLAB软件实现,复合材料气瓶冲击损伤分析采用ANSYS进行,通过两个软件之间的信息传递,实现优化计算.以铝内胆复合材料气瓶为算例进行优化,结果表明,在同一冲击能量下,优化后的气瓶基体破裂面积和基体破裂层数均大幅减小,剩余爆破压力显著提高.当冲击能量为60 J时,该气瓶表面基体破裂面积减少了8.8%,基体破裂层数减少了14.3%,剩余爆破压力值提高了9.6%.本文建立的优化算法可以用于复合材料
为研究机床床身用树脂矿物复合材料在典型工况下的损伤演化过程、破坏失效形式,基于颗粒流数值模拟技术(Three-dimensional particle flow code,PFC3D),考虑级配和随机骨料形状,建立了包含骨料、界面过渡区、树脂基质、孔隙的树脂矿物复合材料四项介质离散元模型.结合机床典型工况下的受力情况,研究了树脂矿物复合材料损伤演化过程及裂纹分布规律,并从细观角度研究了裂纹萌生、扩展、贯穿的形成机制.研究结果表明:(1)树脂矿物复合材料损伤演化过程可以明显分为四个阶段;(2)骨料与树脂基质