论文部分内容阅读
The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor.The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets.The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor.The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down.In this present paper,we present a conceptual design approach for fuel element plate,in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate.
The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997. The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor. Purpose of this this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets. The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor. The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down. In this present paper, we present a conceptual design approach for fuel element plate, in conjunction with a genetic algorithm to obtain a fue l plate that maximizes a fitness value to optimize the safety design of the fuel plate.