论文部分内容阅读
目前基于压缩感知的跳频信号参数估计方法大多是在高斯背景噪声下进行的研究,而在非高斯α稳定分布脉冲噪声环境下,已有基于高斯噪声数学模型设计的算法性能下降。针对上述问题,该文分析了α稳定分布噪声的大幅值脉冲满足近似稀疏性条件,利用跳频信号与噪声之间的时域特征差异将信噪分离,实现噪声抑制。并在压缩感知框架下,建立与跳频信号特点相匹配的3参数字典,采用最优匹配(Optimal Match,OM)方法对跳频信号自适应分解,获取匹配原子,基于这些时频原子包含的信息估计跳频信号的参数。仿真验证表明,在α稳定分布噪