论文部分内容阅读
动态变化的图数据在现实应用中广泛存在,有效地对动态网络异常数据进行挖掘,具有重要的科学价值和实践意义.大多数传统的动态网络异常检测算法主要关注于网络结构的异常,而忽视了节点和边的属性以及网络变化的作用.提出一种基于图神经网络的异常检测算法,将图结构、属性以及动态变化的信息引入模型中,来学习进行异常检测的表示向量.具体地,改进图上无监督的图神经网络框架DGI,提出一种面向动态网络无监督表示学习算法Dynamic-DGI.该方法能够同时提取网络本身的异常特性以及网络变化的异常特性,用于表示向量的学习.实验结果