论文部分内容阅读
针对网络入侵的不确定性导致异常检测系统误报率较高的不足,提出一种基于Q-学习算法的异常检测模型(QLADM)。该模型把Q-学习、行为意图跟踪和入侵预测结合起来,可获得未知入侵行为的检测和响应。通过感知环境状况、选择适当行为并从环境中获得不确定奖赏值,有效地判断动态系统的入侵行为扣降低误报率。给出了该模型框架和各模块的功能描述.经实验验证该模型是有效的。