论文部分内容阅读
将一种动态递归网络——Elman神经网络应用到凝汽器真空预测。通过实例计算,表明该方法能够较准确地预测凝汽器真空,并具有训练速度快、结构简单、精度高的特点,是一种行之有效的预测方法。同时,对反向传播(BP)神经网络算法会出现局部极小值,提出了利用粒子群优化算法的全局寻优能力优化Elman神经网络连接权值系数的方法。仿真结果表明,利用粒子群优化算法的Elman神经网络可以建立精度更高的凝汽器真空预测模型。