【摘 要】
:
In this paper,we give a survey of our recent results on extension theorems on K(a)hler manifolds for holomorphic sections or cohomology classes of (pluri)canonical line bun-dles twisted with holomorphic line bundles equipped with singular metrics,and also
【机 构】
:
Institute of Mathematics,AMSS,and Hua Loo-Keng Key Laboratory of Mathematics,Chinese Academy of Scie
论文部分内容阅读
In this paper,we give a survey of our recent results on extension theorems on K(a)hler manifolds for holomorphic sections or cohomology classes of (pluri)canonical line bun-dles twisted with holomorphic line bundles equipped with singular metrics,and also discuss their applications and the ideas contained in the proofs.
其他文献
该文考虑了有界区域上一类带奇异非线性项(1-u)-2的四阶演化方程解的适定性.该模型具有很强的物理背景,它刻画了微机电模型的工作原理.首先,该文研究了四阶抛物方程解的适定性,该方程的适定性在文章[1]中通过半群理论得到验证,但是他们只限于区域空间维数为2维的情形.通过Faedo-Galerkin技巧,可以证明该方程在空间维数小于等于7的情形下解是适定的.
Assume that 0 < p < ∞ and that B is a connected nonempty open set in Rn,and that Ap(B) is the vector space of all holomorphic functions F in the tubular domains Rn + iB such that for any compact set K (C) B,‖y (→) ‖x (→) F(x + iy)‖Lp(Rn)‖L(K) < ∞,so Ap(B)
研究n(n≥2)维分数阶扩散的MHD-Boussinesq系统.当非负常数α,β及γ满足α≥1/2+n/4,α+β≥1+n/2及α+γ≥n/2时,利用能量方法,得到了MHD-Boussinesq系统全局解的存在唯一性,推广了已有的结果.
We revisit the intrinsic differential geometry of the Wasserstein space over a Riemannian manifold,due to a series of papers by Otto,Otto-Villani,Lott,Ambrosio-Gigli-Savaré,etc.
Let M be a smooth pseudoconvex hypersurface in Cn+1 whose Levi form has at most one degenerate eigenvalue.For any tangent vector field L of type (1,0),we prove the equality of the commutator type and the Levi form type associated to L.We also show that th
该文研究具有对数非线性项和粘性项的非线性抛物方程的初边值问题.在一些适当的条件下,得到弱解的全局存在性.关于爆破性方面,得到该方程的解在任何有限时刻不爆破.这与具有多项式非线性项和粘性项的抛物方程有所不同,在那种情况下,方程的解在有限时刻爆破.
该文研究时间尺度上带超线性中立项的二阶时滞动力方程的振动性,运用Riccati变换和Bernoulli不等式等技巧,得到了该方程多个新的振动定理,推广和改进了已有文献中的相应结果,其中几个定理即使对于微分方程也是新的.最后该文分别给出相应的实例验证了所得定理的有效性.
该文研究空间非均匀线性Boltzmann方程在周期区域上非角截断硬势情形下解的渐近行为.在带有多项式权的L1vL2x((v)κ)空间中得到了解的最优指数收敛速率.将从谱理论和半群理论的角度来对该方程进行分析,主要方法是借助于在Hilbert空间中的强制性估计、算子分解以及空间拉大理论等.
The family of spaces F(p,q,s) was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and have connections with many other area
对于含有中性标量场及规范位势的非线性薛定谔方程组,当非线性项的增长指数p>2时,该文证明了非平凡解的存在性.