论文部分内容阅读
针对非线性系统状态模型未知的情形,提出一种基于高阶容积卡尔曼滤波和神经网络的状态估计算法,解决了未知非线性系统模型的状态估计问题。在算法的实现过程中,首先利用神经网络对非线性系统建立状态空间模型,然后把神经网络的权重和系统的状态变量组合在一起作为新的状态变量,并采用高阶容积卡尔曼滤波对新的状态进行实时更新,从而达到神经网络对非线性系统模型的真实逼近以及对状态值的精确估计。最后的目标跟踪仿真表明,该算法具有更高的估计精度。