论文部分内容阅读
为了精确得到铝合金标样等离子体的电子温度和电子密度,实验采用激光诱导击穿光谱技术,利用532 nm调Q Nd:YAG激光器诱导产生铝合金E311等离子体。测量铁原子谱线(381.59 nm)的Stark展宽(0.12 nm)得到等离子体的电子密度是4.3×1016cm-3;基于铁原子谱线(370.56,386.55,387.25,426.05,427.18,430.79,432.57,440.48 nm),利用迭代Boltzmann算法,得到回归系数为0.999时等离子体的电子温度是8 699 K。基于铝合金标样(E311、E312、E313、E314、E315、E316)和铁原子谱线404.58 nm,建立了铁元素的标准曲线,计算得到铁元素的探测限是0.0779 wt%。等离子体特征参数表明铝合金等离子体满足光学薄和局部热力学平衡状态。
In order to accurately obtain the electronic temperature and electron density of the aluminum alloy standard sample, laser induced breakdown spectroscopy was used to produce the aluminum alloy E311 plasma by 532 nm Q-switched Nd: YAG laser. The electron density of the plasma obtained by measuring Stark broadening (0.12 nm) of the iron atom line (381.59 nm) was 4.3 × 10 16 cm -3; and the electron density based on the atomic line of iron (370.56,386.55,387.25,426.05,427.18,430.79,432.57,440.48 nm). Using the iterative Boltzmann algorithm, the electron temperature of the plasma is 8 699 K when the regression coefficient is 0.999. The standard curve of iron was established based on the aluminum alloy standard (E311, E312, E313, E314, E315, E316) and the iron atom spectrum of 404.58 nm. The calculated detection limit of iron was 0.0779 wt%. The plasma parameters indicate that the aluminum alloy plasma satisfies the optical thin and local thermodynamic equilibrium.