论文部分内容阅读
当前对高速通信的需求导致对信道资源的利用已经超出了可以采用线性模型建模的范围,所以必须采用适当的非线性模型进行描述,为了实现对高速通信中非线性信道的辨识,提出了采用自适应神经模糊推理系统(ANFIS)进行信道辨识的方法,并对ANFIS网络的结论参数采用最小二乘法进行辨识,对前提参数采用误差反传的方法进行学习,最后,运用MAT-LAB实现了对非线性信道进行辨识及均衡的仿真,并将仿真结果与BP网辨识结果进行比较,说明ANFIS网络能很好地逼近非线性信道的传递函数,并在收敛速度及辨识精度方面优于BP网络。