论文部分内容阅读
高光谱影像是一个三维的海量数据立方体,如果对高光谱图像直接进行分割,那么算法运算量会很大;如果对高光谱影像先进行数据降维再进行分割,则会损失图像的部分细节信息,影响分割效果。本文提出一种基于光谱角空间变换的高光谱图像分割方法,首先计算每个像元与其周围领域像元之间的光谱夹角,并把这些光谱角的值作为坐标值,将像元映射到一个低维空间中,计算低维空间中样本点到原点的距离并将其转换为灰度值,从而生成一幅突出了地物区块边缘信息的灰度图像。然后利用分水岭变换对生成的灰度图像进行分割,提取分割后各区块局部极小值点的