论文部分内容阅读
为了快速检测马铃薯叶片的水分含量,并探究受到干旱胁迫时叶片含水率变化情况,利用高光谱成像对马铃薯叶片含水率进行检测和可视化研究。采集71个叶片,用烘干法对叶片水分梯度进行控制,共得到355个样本。使用高光谱分选仪器采集叶片862.9~1 704.2 nm(256个波长)的光谱成像数据,采用称重法测量含水率。利用Sample set partitioning based on joint X-Y distance(SPXY)算法将总样本按照2∶1的比例划分为建模集(240个样本)和验证集(115个样本)。对采集的数据进行光谱特征分析,本文分别用CA和RF两种算法,各筛选得到15个特征波长。基于CA筛选出相关系数高于0.96的15个波长分别为1 406.82, 1 410.12, 1 403.62, 1 413.32, 1 416.62, 1 419.82, 1 400.32, 1 423.12, 1 426.32, 1 429.62, 1 432.82, 1 436.12, 1 439.32, 1 442.52和1 445.8 nm。基于RF算法筛选被选概率高于0.3的15个特征波长,按照被选择概率值从大到小排列,分别为1 071.62, 1 041.12, 1 222.52, 1 465.22, 1 397.02, 1 449.02, 1 034.32, 1 523.22, 976.42, 1 172.52, 979.82, 1 165.82, 1 037.72, 1 426.32和869.8 nm。用CA和RF算法筛选到的特征波长建立PLSR模型,分别记为CA-PLSR模型和RF-PLSR模型。利用高精度模型检测结果,对马铃薯叶片含水率进行可视化分析,首先计算马铃薯叶片图像每个像素点的含水率,得到灰度图像,然后对灰度图像进行伪彩色变换,绘制出叶片含水率可视化彩色图像。为了体现马铃薯叶片烘干处理中含水率变化进程,用HSV彩色模型对样本叶片的伪彩色图像进行分割,获得分割图像结果,显示出在某含水率区间的叶片面积比例。结果显示, CA算法选取的15个波长均在1 400.3~1 450.0 nm范围内, CA-PLSR模型的建模精度(R■)为0.975 5、建模集均方根误差(RMSEC)为2.81%,验证集精度(R■)为0.933 2、验证集均方根误差(RMSEV)为2.31%。RF算法选取的特征波长分布范围较CA法选取范围广,具有局部"峰谷"特性,且RF-PLSR模型的建模集精度(R■)为0.983 2、 RMSEC为2.32%,验证集精度(R■)为0.947 1、 RMSEV为2.15%。选取RF-PLS模型计算马铃薯每个像素点的含水率,得到伪彩色变换图像,观察可知随着烘干时间的增加含水率逐渐下降;并能够从叶片结构角度看到,随着水分胁迫的加强,叶片从边缘开始失水,逐渐向叶片中间蔓延,其中叶茎和叶脉的含水率较其他部位高。计算得到叶片伪彩色图像中含水率大于90%, 80%和70%的像素点占整个叶片图像的比例。利用高光谱成像技术可以实现马铃薯叶片的含水率检测与分布可视化表达,为监测马铃薯生长状况以及叶片含水率分析提供新的理论根据。