论文部分内容阅读
时空聚类分析是对时空大数据进行利用的一种有效手段,目前传统聚类算法存在着大规模分布数据难以处理,海量数据处理时间较长,确定参数困难,聚类质量较差等缺陷。因此,提出一种分布式增量聚类流程DICP,利用广域网分布增量聚类方法,避免大量数据的传输拷贝,有效提升聚类运算效率。对于DICP流程中的时空数据聚类算法本身,研究了一种大数据环境下的IMSTDCA时空数据聚类算法,借助密度聚类的思想,通过时空数据的聚集趋势预分析、时空数据聚类算法,以及时空数据聚类结果评价3个步骤完成聚类分析,实现时空大数据的快速高效