论文部分内容阅读
推荐系统通常利用商品属性、用户信息以及用户对商品的已有评分来获取用户或者商品之间的相似度,进而预测未知评分。构造了关于这些信息的四部图,然后根据图中不同部分的组合获得了10类推荐算法,并比较了它们的时间复杂度。前两类算法基于用户与商品之间的关系,为经典的协同过滤算法。中间4类算法以用户或商品为中心,利用相应的标签信息进行相似度的计算并预测评分。后4类算法为中间4类算法的部分拓展,进一步考虑了评分信息。以MAE(meanabsoluteerror)和RMSE(root-mean-squareerror)为评