论文部分内容阅读
用数值积分和庞加莱映射方法对采用短轴承模型的刚性 Jeffcott转子轴承系统在较宽参数范围内进行稳定性研究。计算结果表明 ,系统存在倍周期分叉、概周期及混沌运动。用数值方法得到系统在某些参数域中的分叉图、响应曲线、频谱图、相图、轴心轨迹及庞加莱映射图 ,直观地显示了系统在某些参数域中的运行状态 ,并用分形几何理论对混沌系统的状态进行了判断。数值分析结果为定性地控制转子轴承系统的运行状态提供了理论依据
The rigid Jeffcott rotor bearing system with short bearing model is studied for stability over a wide range of parameters using numerical integration and Poincaré mapping. The calculation results show that the system has double periodic bifurcation, almost periodic and chaotic motions. The bifurcation diagram, response curve, spectrogram, phase diagram, axis locus and Poincaré map of the system in some parameters are numerically obtained to visually show the operating status of the system in some parameter domains. The fractal geometry theory is used to judge the state of chaotic system. The numerical analysis provides a theoretical basis for the qualitative control of the operating conditions of the rotor bearing system