【摘 要】
:
研究了D301和MIEX两种阴离子交换树脂对水中BrO3-的吸附性能.结果表明:pH值对两种树脂吸附BrO3-的影响相似,两种树脂均在pH为4~9范围时对BrO3-的吸附量最大.共存Cl-、SO42-和N
论文部分内容阅读
研究了D301和MIEX两种阴离子交换树脂对水中BrO3-的吸附性能.结果表明:pH值对两种树脂吸附BrO3-的影响相似,两种树脂均在pH为4~9范围时对BrO3-的吸附量最大.共存Cl-、SO42-和NO3-明显削弱两种树脂对BrO3-的吸附,其影响大小顺序为NO3->SO42->Cl-.MIEX树脂吸附BrO3-仅需4 min达到平衡,D301树脂吸附BrO3-需180 min达到平衡,MIEX树脂具有比D301树脂更大的准二级速率常数K2和颗粒内扩散速率常数Kid.BrO3-在D301和MIEX两种树脂上的吸附等温线符合Freundlich方程,MIEX树脂对BrO3-的吸附量大于D301树脂对BrO3-的吸附量.D301和MIEX两种树脂对BrO3-的吸附机理为阴离子交换.
其他文献
基于激光二极管(Laser diode,LD)的照明和显示技术代表了半导体行业未来的重要发展方向之一,荧光转换材料是决定激光照明的能量效率和显示产品色彩品质的核心部件.黄色荧光转
为了抑制宽条形半导体激光器的热透镜效应,提高慢轴光束质量,本文提出并制作了一种微热通道电极结构激光器。该芯片p面注入区电极处被设计为较厚的高热导率的电极结构,封装后激光器两侧与热沉之间形成空气间隙,抑制激光器有源区横向热流,使激光器内温度分布均匀,有效地降低慢轴发散角。对该激光器的封装模型进行了稳态热分析,优化了微热通道电极结构的厚度和宽度,并制作了波长为940 nm的微热通道电极结构激光器。测试结果表明,在注入电流为2 A时,微热通道电极结构激光器的发散角相对于普通电极结构激光器降低了24%,有效地降低
采用高温固相一步法合成了新型荧光粉Sr3(BN2)2(以下简写为SBN)。采用X射线衍射、扫描电子显微镜、荧光分光光度计对荧光粉的相组成、形貌和发光性能进行表征。讨论了SBN荧光粉的缺陷发光机理和长余辉特性。结果表明,所制备的样品SBN晶体为立方晶系Im-3m。在紫外区域有较宽的激发带,发射光谱峰值位于525 nm,半峰宽为3334 cm-1。SBN荧光粉材料存在本征缺陷,在基质中形成了Sr的空位,在光激励下形成发光中
近年来,钙钛矿太阳能电池因高效率、低成本等特点获得了持续的关注,但是有机成分在稳定性方面始终存在一些问题。相比于有机-无机杂化钙钛矿太阳能电池,全无机钙钛矿材料可以很大程度上避免外界环境的影响,对氧环境要求低,对于湿度环境的容许度也比较大;由于自身结构,在光热稳定性方面,也要优于有机-无机杂化钙钛矿。因此,发展全无机钙钛矿太阳能电池是有效提高钙钛矿太阳能电池稳定性的方向之一。本文从稳定性方面入手,系统地介绍了全无机钙钛矿太阳能电池的最新研究进展。结合全无机钙钛矿太阳能电池稳定性的影响因素,总结了当前全无机
白光LED由于发光效率高、寿命长以及节能环保等优点,已逐渐成为照明行业的主流产品.通常照明用白光LED要求高显色指数和低色温.本文采用Gd3(Al,Ga)5O12:Ce(GGAG:Ce)作为发光
在有效质量近似下,通过变分理论计算了应变纤锌矿ZnSnN2/InxGa1-xN柱形量子点的带隙,进而利用细致平衡理论,研究了柱形量子点太阳能电池的转换效率在多重激子效应以及内建电场的影响下随量子点半径、高度和In组分的变化关系。结果表明,量子点太阳能电池的转换效率随着量子点半径、高度以及In组分的增加单调增加。多重激子效应能够明显提高太阳能电池的转换效率,但是内建电场会使得太阳能电池的转换效率明显降低。
稀土或过渡金属离子掺杂荧光材料因其环保、易于制备、高效率、低成本、长发光寿命、全光谱、高亮度等性能在多重防伪、光学信息存储、温度传感等众多领域具有广泛的应用,特
为了提高氮化镓(GaN)基发光二极管(LEDs)的发光性能,采用等离子体增强化学气相沉积(PECVD)在蓝宝石衬底上沉积SiO2薄膜,经过光刻和干法刻蚀技术制备了SiO2图形化蓝宝石衬底(SiO2patterned sapphire substrate,SPSS),利用LED器件的外延生长和微纳加工技术获得了基于SPSS的GaN基LED器件。通过分析GaN外延层晶体质量、光提取效率和LED器件性能,重点研究了SPSS对GaN生长及LED发光
深紫外发光二极管(Deep-ultraviolet light-emitting diode,DUV-LED)具有环保无汞、寿命长、功耗低、响应快、结构轻巧等诸多优势,在杀菌消毒、生化检测、医疗健康、隐秘通讯等领域具有重要应用价值。近年来,深紫外LED技术取得了快速发展,主要体现在光效和可靠性的不断提高,这一方面得益于芯片制造过程中氮化物材料外延和掺杂技术的进步,另一方面归功于深紫外LED封装技术的发展。但是,与波长较长的近紫外和蓝光LED相比,深紫外LED的光效和可靠性仍有很大提升空间。本综述重点对深紫
钆铝石榴石(Gd3Al5O12,GdAG)是性能优异的发光基质材料,但其在高温煅烧时易发生分解,导致得到纯相GdAG基发光材料比较困难.近年来,研究证实通过小半径Ln3+(Ln=Y,Lu,Tb)取代部