论文部分内容阅读
Heterosis has contributed greatly to yield in maize, but the nature of its contribution is not completely clear. In this study, two strategies using whole-genome oligonucleotide microarrays were employed to identify differentially expressed genes (DEGs) associated with heterosis and yield. The analysis revealed 1 838 heterosis-associated genes (HAGs), 265 yield- associated genes (YAGs), and 85 yield heterosis-associated genes (YHAGs). 37.1% of HAGs and 22.4% of YHAGs expressed additively. The remaining genes expressed non-additively, including those with high/low-parent dominance and over/under dominance, which were prevalent in this research. Pathway enrichment analysis and quantitative trait locus (QTL) co-mapping demonstrated that the metabolic pathways for energy and carbohydrates were the two main enriched pathways influencing heterosis and yield. Therefore, the DEGs participating in energy and carbohydrate metabolism were considered to contribute to heterosis and yield significantly. The investigation of potential groups of HAGs, YAGs, and YHAGs might provide valuable information for exploiting heterosis to improve yield in maize breeding. In addition, our results support the view that heterosis is contributed by multiple, complex molecular mechanisms.
Heterosis has contributed greatly to yield in maize, but the nature of its contribution is not completely clear. In this study, two strategies using whole-genome oligonucleotide microarrays were employed to identify differentially expressed genes (DEGs) associated with heterosis and yield. revealed 1 838 heterosis-associated genes (HAGs), 265 yield-associated genes (YAGs), and 85 yield heterosis-associated genes (YHAGs). 37.1% of HAGs and 22.4% of YHAGs expressed additively. , including those with high / low-parent dominance and over / under dominance, which were prevalent in this research. Pathway enrichment analysis and quantitative trait locus (QTL) co-mapping demonstrated that the metabolic pathways for energy and carbohydrates were the two main enriched pathways influencing heterosis and yield. Therefore, the DEGs participating in energy and carbohydrate metabolism were considered to contribute to heterosis and yield significan tally. The investigation of potential groups of HAGs, YAGs, and YHAGs might provide valuable information for exploiting heterosis to improve yield in maize breeding. In addition, our results support the view that heterosis is contributed by multiple, complex molecular mechanisms.