论文部分内容阅读
We study the relation between the magnetic field structure and the induced electric-current distribution based on a cylindrical model composed of a uniform electrically conductive medium. When the time-varying magnetic fields are axisymmetrically applied in the axial direction of the model, the electric fields are induced around the central axis in accordance with Faradays law. We examine the eddy-current distributions generated by loop-coils with various geometries carrying an alteating electric current. It is shown that the radial structure of the induced fields can significantly be controlled by the loop coil geometry, which will be suitable for practical use especially in magnetic nerve stimulation on bioelectromagnetics, if we appropriately place the exciting coil with optimum geometry.