论文部分内容阅读
为了有效地利用物流成本估计中线性和非线性数学模型的优点,把线性预测性能优异的ARIMA数学模型和RBF神经网络相结合,使模型非线性数学变化上形成估计优化,可以捕捉物流成本价格的线性和非线性规律,有效地减少传统预测数学模型中一些非线性因素的影响。以某物流公司1991~2012年物流操作成本为数据,将所提出的数学模型与网格搜索SVR模型、PSO-SVR模型、Levenberg-Marquardt BP神经网络模型及背景值优化GM(1,1)模型进行对比实验。结果表明所提出的优化数学模型能够解决上述问题且具有更高的预测精度。