论文部分内容阅读
The microstructures and interfacial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the trans-mission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.
The microstructures and interfacial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the trans-mission electronic It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111) type I twins to (011) type II twins and then to (100) compound twins, nanocrystals and bulk amorphization happen by the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.