论文部分内容阅读
针对传统Mean Shift跟踪算法在进行目标跟踪时背景带来的定位偏差及由于缺乏相应的跟踪状态分析策略而易陷入局部最小值的缺陷,提出了两方面的改进措施。一是将跟踪窗口内的目标和背景区分开来,对背景像素定义新的特征模型以弱化背景像素对目标模型的影响。二是将跟踪窗口进行分块处理,综合考虑每个子块相似度的大小变化建立判断准则,对跟踪状态进行动态实时分析,以判断目标是否存在遮挡:如部分遮挡,则应用没有被遮挡的子块位置偏差对目标进行定位;如完全遮挡,则采取相应的二维线性预测方案根据先验信息对目标进行定位跟踪。