论文部分内容阅读
现有的自适应亲和传播聚类存在聚类时间长、精度低的缺点,提出了一种结合半监督的改进自适应亲和传播聚类(SAAP)。它首先利用半监督学习更新相似度矩阵,而后在亲和传播聚类的基础上,通过基于二分法判断实现自适应搜索有效聚类数空间,最后由加权评价函数确定最佳聚类。经实验证明,SAAP算法可以更快速地扫描有效聚类空间,并能够得到较小的错分率和较高的有效性评价。