Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:user180
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death. Therefore, it is extremely important to search for a target that inhibits autophagy activation. Long non-coding RNA MEG3 participates in autophagy. However, it remains unclear whether it can be targeted to regulate cerebral ischemia/reperfusion injury. Our results revealed that in oxygen and glucose deprivation/reoxygenation-treated HT22 cells, MEG3 expression was obviously upregulated, and autophagy was increased, while knockdown of MEG3 expression greatly reduced autophagy. Furthermore, MEG3 bound miR-181c-5p and inhibited its expression, while miR-181c-5p bound to autophagy-related gene ATG7 and inhibited its expression. Further experiments revealed that mir-181c-5p overexpression reversed the effect of MEG3 on autophagy and ATG7 expression in HT22 cells subjected to oxygen and glucose deprivation/reoxygenation. In vivo experiments revealed that MEG3 knockdown suppressed autophagy, infarct volume and behavioral deficits in cerebral ischemia/reperfusion mice. These findings suggest that MEG3 knockdown inhibited autophagy and alleviated cerebral ischemia/reperfusion injury through the miR-181c-5p/ATG7 signaling pathway. Therefore, MEG3 can be considered as an intervention target for the treatment of cerebral ischemia/reperfusion injury. This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Zhengzhou University, China (approval No. XF20190538) on January 4, 2019.
其他文献
Hypoxia-inducible factors (HIFs) are transcriptional regulators playing important roles in adapting various types of cells to physiological and pathological hypoxia cues. Three structurally related, oxygen-sensitive HIFα proteins have been identified (HIF
期刊
Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, most studies are volume-based which may lead to inaccurate anatomical positioning of functional data. The
Studies have shown that myelin-associated glycoprotein(MAG)can inhibit axon regeneration after nerve injury.However,the effects of MAG on neuroma formation after peripheral nerve injury remain poorly understood.In this study,local injection of MAG combine
At present, predicting the severity of brain injury caused by global cerebral ischemia/reperfusion injury (GCI/RI) is a clinical problem. After such an injury, clinical indicators that can directly reflect neurological dysfunction are lacking. The change
The mouse model of multiple cerebral infarctions, established by injecting fluorescent microspheres into the common carotid artery,is a recent development in animal models of cerebral ischemia. To investigate its effectiveness, mouse models of cerebral in
We recently achieved significant functional recovery after a complete spinal cord injury, allowing previously paralyzed mice to walk again. This was accomplished by a single, unilateral application of an adeno-associated virus (AAV) carrying the cDNA for
期刊
Due to the high degree of conservation of genes and mechanisms, the fruit fly Drosophila melanogaster is a powerful experimental in vivo tool to investigate complex diseases, thus complementing traditional vertebrate systems. Drosophila is also an advanta
期刊
Morphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections.Novel optical tissue clearing techniques enabling three-dimensional imaging of entire organs at a subcellular resolution have
Autophagy has been shown to play an important role in Parkinson\'s disease.We hypothesized that skin-derived precursor cells exhibit neuroprotective effects in Parkinson\'s disease through affecting autophagy.In this study,6-hydroxydopamine-damaged SH
The mechanism of AD remains uncovered:The current mainstream doctrine in Alzheimer\'s disease (AD) is the amyloid cascade hypothesis. According to this hypothesis, amyloid-β (Aβ) deposition is the main reason for neurofibrillary tangles formation and sy
期刊