【摘 要】
:
介绍了基于InGaAs单光子探测器的日光条件测距实验,通过压缩激光接收视场、使用超窄带滤光片、结合超快主动淬灭电路等降低InGaAs单光子探测器死时间的方法,成功地进行了基于InGaAs单光子探测器的日光条件光子计数测距实验。分析实验数据,分别获取基于InGaAs探测器和Si基探测器的系统探测灵敏度、系统测距精度等参数,并进行比较。实验结果表明:经过高速主动淬灭电路优化后的InGaAs探测器,其死时间与Si基探测器的死时间相当;在背景光噪声一定的情况下,使用InGaAs探测器可以提高系统的探测灵敏度,从而
【机 构】
:
中国科学院上海技术物理研究所,上海200083中国科学院大学,北京100049山东大学,山东济南250100
论文部分内容阅读
介绍了基于InGaAs单光子探测器的日光条件测距实验,通过压缩激光接收视场、使用超窄带滤光片、结合超快主动淬灭电路等降低InGaAs单光子探测器死时间的方法,成功地进行了基于InGaAs单光子探测器的日光条件光子计数测距实验。分析实验数据,分别获取基于InGaAs探测器和Si基探测器的系统探测灵敏度、系统测距精度等参数,并进行比较。实验结果表明:经过高速主动淬灭电路优化后的InGaAs探测器,其死时间与Si基探测器的死时间相当;在背景光噪声一定的情况下,使用InGaAs探测器可以提高系统的探测灵敏度,从而增加系统的最大测程;得益于InGaAs探测器的低抖动时间,在提高系统最大测程的同时,系统的测距精度不受影响。
其他文献
多普勒激光雷达在大气风场探测方面已经得到了广泛应用。光纤Mach-Zehnder干涉仪(MZI)作为多普勒激光雷达的新型鉴频系统,具有体积小、轻便、稳定性高的优点。鉴于一般常用的单模光纤MZI与望远镜接收系统的多模光纤直接耦合时能量耦合损耗严重、耦合效率低的缺点,提出采用多模光纤MZI作为鉴频系统,以提高耦合效率,实现能量及探测高度的增加。针对多模光纤MZI可能产生的干涉质量下降问题,利用调整入射角及扰模方式实现多模光纤准单模输出,理论计算结果表明实验所用多模光纤准单模输出对应的入射角度为0.8°,扰模直
从玻璃体中离子扩散方程出发,得出了熔盐法和双坩埚法制成的自聚焦型光波导纤维中严格的折射率分布公式;并计算了用这种离子扩散规律制成的自聚焦型光波导纤维的信息传输速率;说明用这种方法制成的光波导纤维,可以传输极高速率(1千兆比特/秒/公里以上)的光信息。
除了一个例外外,在氦-氖气体光激射器中抓3s2→2p可见激射光跃迁的功率输出是近似地与等离子体区放电长度的增减成线性关系(正好高于阈值的情况下)。这唯一的例外也曾有人注意过,它是氖的3s2与2p2能级之间跃迁的6402.84埃激射光。这个跃迁,特别是在小口径微波激射管内等离子体长度起过一米,氖、氦比率大时,它显示出随等离子体长度增加而输出功率减小。
针对成像测量系统中镜头径向畸变影响测量精度的问题,提出了一种基于物面移动同心圆特征靶标的径向畸变标定方法。该方法先将固定在二维精密平台上的同心圆靶标置于垂直物面的特定位置,然后采集靶标图像,同时用最小二乘法以拟合得到的圆直径为条件,按一定方式移动特征靶标,直到拟合值达到极值或者在一定误差范围内。记录该幅图像,则其拟合得到的圆心坐标便是畸变中心,同时利用该幅图像,根据等差值半径和摄像机成像模型的半径
针对激光频率长期漂移锁定问题,实现了一套以光学频率梳为参考源的数字稳频系统。该系统将被控激光与光学频率梳外差干涉,获取表征激光频率偏移的拍频信号,通过自主研制的数字计数式频率电压转换电路测量拍频电信号的频率,并将频率值转换为误差电压信号,通过主控程序反馈控制被控激光。在对760 nm窄线宽半导体激光器的长期频率稳定实验中,本系统将该激光器频率的长期稳定度提高2个量级,达到4.4×10 -10 (τ=262 s),表明本系统可对波长在光学频率频谱范围内的激光实现长期偏频锁
叠层扫描成像和傅里叶叠层扫描成像可增大视场和提高分辨率。基于多距离/多高度轴向扫描和薄柱透镜旋转扫描的计算成像技术采用相位恢复算法,可以高精度重建目标的复数光场。这些成像技术在扩大视场和提高分辨率方面具有显著优势。介绍了含变参数的光学相干衍射系统在计算成像方面的研究进展。作为间接成像形式,多参数成像技术是一类将衍射成像与算法相结合的计算成像技术,实现了复值光场的精确多维表征。
采用WP4-光学多道分析仪对准分子激光轰击Y_1Ba_2Cu_3O_x超导靶产生的等离子体辐射进行了空间分辨测量和研究。实验结果表明,在靶面的邻近区(d
搭建了基于近红外连续激光器的高灵敏度快速扫描光腔衰荡光谱仪(SC-CRDS)。通过压电陶瓷(PZT)快速扫描腔长,并用跟踪电路使腔长自动跟踪激光波长变化,实现衰荡光谱的快速测量。利用CH4在1653.73 nm(6046.95 cm-1)附近的光谱吸收峰,用该装置对CH4气体含量进行测量。通过测量多个光谱点确定吸收线中心吸收峰值和激光波长,并反馈补偿激光中心波长使其稳定在吸收线,成功解决了由于激光
为实现光学元件表面疵病的三维全场测量,提出了一种数字全息显微扫描成像的检测方法。该方法基于数字全息角谱数值重建算法,获得光学元件表面划痕的相位分布,通过扫描拼接实现划痕的全场测量;然后,在数字全息显微实验装置的基础上增加二维精密扫描部件,对于宽50μm、深50 nm标准划痕,测得其宽度为49.2μm、深度为48.9 nm,同时拼接获得该划痕的全场三维形貌。实验表明:该检测方法可实现大视场划痕缺陷的