论文部分内容阅读
针对交替最小二乘法中矩阵稀疏度较大时推荐结果的准确性下降问题,提出了一种改进的协同过滤算法。该算法根据用户对各种潮州美食的评分,结合其他用户的兴趣相似度,并利用潮州美食属性特征的相似度作为权重因子进行矩阵补全。实验结果表明,改进算法的平均MAE(Mean Absolute Error)值为0.583,有效地提高了推荐精度。