论文部分内容阅读
针对图像处理中人脸表情识别率不高的问题,提出了一种基于特征层融合和神经网络的人脸表情识别方法。利用PCA对原图像进行特征降维处理得到维数较低的表情图像特征,再从粗到细策略对特征进行融合,最后采用神经网络的BP反向传播算法对训练集和验证集经多次迭代后训练好人脸表情模型。将收集到的表情数据进行实验仿真对比表明:本文提出方法与常用的分类算法相比,人脸表情识别率在本文提到的表情数据库上取得更好的效果。