论文部分内容阅读
为实现自然场景下低分辨率苹果果实病害的智能识别,对获取图像进行预处理,采用改进的水平集交互式分割方法提取病斑。根据病斑特点,提取H,S,V等3个通道的2个低阶颜色矩作为颜色特征,基于灰度共生矩阵提取8个特征参数作为纹理特征,提取病斑的Hu不变矩作为形状特征。在对特征进行优选的基础上,构建支持向量机病害识别模型。实验结果表明,用优选的15个特征和支持向量机识别模型,对3种病害的平均正确识别率达到90%,可以有效识别苹果果实病害。