论文部分内容阅读
A new output feedback adaptive control scheme for multi-input and multi-output nonlinear systems with parametric uncertainty is presented based on the Nussbaum gain method and the backstepping approach. The high frequency gain matrix of the linear part of the system is not necessarily positive definite, but can be transformed into a lower or upper triangular matrix whose signs of diagonal elements are unknown. The new required condition for the high frequency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable. The global stability of the closed loop systems is guaranteed through this control scheme, at the same time the tracking error converges to zero.
A new output feedback adaptive control scheme for multi-input and multi-output nonlinear systems with parametric uncertainty is presented based on the Nussbaum gain method and the backstepping approach. The high frequency gain matrix of the linear part of the system is necessarily necessarily positive definite , but can be transformed into a lower or upper triangular matrix whose signs of diagonal elements are unknown. The new required condition for the high frequency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable. The global stability of the closed loop systems are guaranteed through this control scheme, at the same time the tracking error converges to zero.