论文部分内容阅读
采用BP神经网络对铝电解NiFe2O4基金属陶瓷惰性阳极的电解腐蚀过程进行了系统辨识。建立了以Al2O3质量浓度、电解温度、分子比、面积比和电流密度为输入,腐蚀率为输出的网络模型。在材料的设计中,采用了GA—BP优化方法,BP网络参与GA迭代计算时对个体的评价。应用结果表明,NiFe2O4基金属陶瓷惰性阳极的电解腐蚀率预测结果与实测值吻合;优化设计的结果与实验值很接近。