论文部分内容阅读
为提高个性化标签推荐方法性能,提出基于Gibbs采样推理的微博个性化标签隐含关系主题模型(Rela—tion Topic Model,RTM)推荐算法.首先,利用图形化形式对微博中的潜在局部信息进行表达,对用户主题分布为代表的用户进行top-k相似用户发现,然后计算出现在这些用户中的所有标签的频率,并推荐与用户最相关的标签.其次,为挖掘潜在主题信息,利用带惩罚项的增强型余弦相似度RTM模型对微博标签进行命名,大大提高联合建模对潜在主题生成标签的影响,并可发现全局标签和主题之间的关系;最后,通过真实的实验结