论文部分内容阅读
The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved polyethylene catalyst.The effects of catalyst structure on kinetic behavior were examined.The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays(EDAX),and morphologies of catalyst particles and polymer products were examined by scanning electron microscope(SEM).Hydrogen response and copolymerization performance were investigated and compared with the two catalysts.The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented.The improved polyethylene catalyst showed higher activity,better hydrogen response and copolymerization performance.
The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene. Particularly, two types of catalysts were investigated, which were N-catalyst (BRICI) and improved polyethylene catalyst. The effects of catalyst structure on kinetic behavior were examined. The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays (EDAX), and morphologies of catalyst particles and polymer products were examined by scanning electron microscope (SEM). Hydrogen response and copolymerization performance were investigated and compared with the two catalysts. The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented. The improved polyethylene catalyst showed higher activity, better hydrogen response and copolymerization performance.